2002 - Number Theory Solutions

[[Comments are written like this.]]

Question 1

(i) (4 marks)

Let P(n) be the proposition $1 + 5 + 12 + 22 + ... + \frac{1}{2} n(3n - 1) = \frac{1}{2} n^2 (n + 1)$.

P(1) is $1 = \frac{1}{2} * 1^2 * (1 + 1)$. As P(1) is true then we have the basis for induction.

Assume P(k) is true for some positive integer k.

$$1 + 5 + 12 + 22 + ... + \frac{1}{2} k(3k-1) + \frac{1}{2} (k+1)[3(k+1)-1]$$

$$= \frac{1}{2} k^{2} (k+1) + \frac{1}{2} (k+1)(3k+2)$$
 (using the induction hypothesis)
$$= \frac{1}{2} (k+1) (k^{2} + 3k + 2)$$

$$= \frac{1}{2} (k+1)^{2} (k+2).$$

Therefore if P(k) is true then P(k+1) is true. This completes the induction step. The result then follows from the Principle of Mathematical Induction.

(ii) (4 marks)

$$211 = 1 * 160 + 51$$

$$160 = 3 * 51 + 7$$

$$51 = 7 * 7 + 2$$

$$7 = 3 * 2 + 1$$

$$2 = 2 * 1 + 0$$

Therefore gcd(211, 160) = 1.

$$1 = 7 - 3 * 2 = 7 - 3 * (51 - 7 * 7) = 22 * 7 - 3 * 51$$

= 22 * (160 - 3 * 51) - 3 * 51 = 22 * 160 - 69 * 51
= 22 * 160 - 69 * (211 - 160) = 211 * (-69) - 160 * (-91)

Therefore solutions of 211x - 160y = 1 are of the form

$$x = -69 + \frac{160}{\gcd(211,160)}t = -69 + 160t, \text{ and } y = -91 + \frac{211}{\gcd(211,160)}t = -91 + 211t,$$
 where t is an integer.

Hence x = -69 + 160 = 91, and y = -91 + 211 = 120 are an appropriate pair of positive integers.

[[Check.
$$211 * 91 = 211 * (100 - 9) = 21,100 - 1899 = 19,201. 160 * 120 = 19200.]]$$

(iii) (3 marks)

Since n has remainder 3 when divided by 12 then n is odd.

As
$$m = 3n + 4$$
 then
 $gcd(m, n) = gcd(n, 4)$ Euclidean Algorithm
 $= 1$ as n is odd.

(i)

4 is of the form 3k + 1 but 4 = 2 * 2, and 2 is not of this form. The statement is **false**.

(ii) [[Need this result in part(iv) so it must be true]].

By the Division Algorithm every number has one of the forms 3k, 3k + 1, or 3k - 1.

The only prime of the form 3k is 3. 3 does not divide a positive integer of the form 3k + 1.

If p_1 and p_2 are primes of the form 3k + 1 then as

$$p_1 p_2 \equiv 1 * 1 \equiv 1 \pmod{3}$$

then the product of two numbers of this type also has the same form.

Therefore a number of the form 3k - 1 must have a prime factor of the same form so the statement is **true**.

(iii)

If m = n = 1, then gcd(m, n) = 1 and gcd(3m + 1, 3n + 1) = gcd(4, 4) = 4. Therefore the statement is **false**.

(iv) [[Since gcd(3, -1) = 1 then Dirichlet's theorem tells us there are an infinite number.]]

The statement is **true**.

Assume there are a finite number of primes of the form 3k - 1 and these are $p_1, p_2, ..., p_n$.

Let $N = 3(p_1p_2...p_n) - 1$. Since this is of the form 3k - 1 then it must have a prime factor of the form 3k - 1 (part ii). Assume this prime is p_i ($1 \le i \le n$).

Since p_i divides N and $3(p_1p_2...p_n)$ then it divides N - $3(p_1p_2...p_n) = 1$.

Since p_i does not divide 1 then the assumption that there are a finite number of primes of the form 3k - 1 must be false. Therefore there are an infinite number of primes of this form.

(i) (2 marks)

Since $n \equiv 2 \pmod{6}$ then n = 6k + 2 for some integer k. Therefore 12n + 7 = 12(6k + 2) + 7 = 72k + 31.

(i)(a)
$$12n + 7 = 72k + 31 \equiv 31 \equiv 7 \pmod{8}$$

(i)(b)
$$12n + 7 = 72k + 31 \equiv 31 \equiv 4 \pmod{9}$$

(ii) (3 marks)

$$19x \equiv 9 \pmod{61} \Leftrightarrow 57x \equiv -4x \equiv 27 \pmod{61}$$
$$\Leftrightarrow -60x \equiv x \equiv 405 \equiv 39 \pmod{61}.$$
Therefore $x \equiv 39 \pmod{61}$.

[[Check.
$$19 * 39 = (20 - 1) * (40 - 1) = 800 - 20 - 40 + 1 = 741 = 610 + 131 = 610 + 122 + 9.$$
]]

[[A solution using the Euclidean Algorithm.
$$61 = 3 * 19 + 4$$
, $19 = 4 * 4 + 3$, $4 = 1 * 3 + 1$. $1 = 4 - 3 = 4 - (19 - 4 * 4) = 5 * 4 - 19 = 5 * (61 - 3 * 19) - 19 = 5 * 61 - 16 * 19$. Therefore $19^{-1} \equiv -16 \pmod{61}$ so $x \equiv (-16) * 9 \equiv -144 \equiv 39 \pmod{61}$.]]

(iii) (6 marks)

By the Chinese remainder theorem the congruences

$$x \equiv 1 \pmod{3}$$
 $x \equiv 2 \pmod{5}$ $x \equiv 3 \pmod{13}$ have a unique solution modulo $3 * 5 * 13 = 195$.

Integers which satisfy the congruence $x \equiv 3 \pmod{13}$ are 3, 16, 29, 42, ... Integers which also satisfy the congruence $x \equiv 2 \pmod{5}$ are 42, 107, 172 ... 172 also satisfies the congruence $x \equiv 1 \pmod{3}$.

Hence 172 is the unique solution modulo 195.

Therefore the least positive integer which satisfies the congruences is 172.

(i) (5 marks)

When p = 2 then $(2 - 1)! \equiv 1 \equiv -1 \pmod{2}$

Let $p \ge 3$ be a prime.

If a is one of the least positive residues then the equation $ax \equiv 1 \pmod{p}$ has a unique solution. [[Unit 3, Th. 3.2(b)]]

If $ab \equiv 1 \pmod{p}$ then if $a \equiv b \pmod{p}$ then $a^2 - 1 \equiv 0 \pmod{p}$. By Lagrange's theorem there are a maximum of 2 solutions when p is a prime. Since 1 and p -1 are solutions then these are the only solutions.

Therefore the remaining p - 3 least positive residues (2, 3, ..., p - 2) must have an inverse which is congruent to another residue in the list. Since the remaining p -3 values can be put into (p - 3)/2 pairs which are inverses of each other we have

$$1 * [2 * 3 * ... * (p - 2)] * (p - 1)$$

$$\equiv 1 * 1^{(p-3)/2} * (p - 1)$$

$$\equiv (p - 1) \equiv -1 \pmod{p}.$$

Therefore $(p - 1)! \equiv -1 \pmod{p}$ if p is a prime.

[[You might prefer the proof in the unit.]]

(ii) (6 marks)

(ii)(a) By FLT
$$40^6 \equiv 1 \pmod{7}$$
.
Therefore $40^{.65} \equiv 40^{.66} * 40^{.1} \equiv (40^{.6})^{.11} * 5^{.1} \equiv 1^{.11} * 3 \equiv 3 \pmod{7}$.

(ii)(b) [[Solution by Linda Brown.]]

[[The original incorrect solution used the FLT. This is NOT valid as a is not always relatively prime to 3, 5, and 13]]

$$195 = 3 * 5 * 13$$
.

Alternative form of FLT gives $a^3 \equiv a \pmod{3}$, $a^5 \equiv a \pmod{5}$ and $a^{13} \equiv a \pmod{13}$.

Hence
$$a^{25} \equiv (a^3)^8 * a \equiv a^8 * a \equiv (a^3)^3 \equiv a^3 \equiv a \pmod{3}$$
,
 $a^{25} \equiv (a^5)^5 \equiv a^5 \equiv a \pmod{5}$,
and $a^{25} \equiv a^{13} * a^{12} \equiv a * a^{12} \equiv a^{13} \equiv a \pmod{13}$.

Hence by the Corollary to Theorem 1.3, with 3, 5 & 13 prime, $a^{25} \equiv a \pmod{195}$, for all integers a.

(i) (4 marks)

As $2^p - 1$ is odd then $gcd(2^{p-1}, 2^p - 1) = 1$.

$$\begin{split} \sigma(m) &= \sigma(2^{p-1}(2^p-1)) \\ &= \sigma(2^{p-1}) \ \sigma(2^p-1) \\ &= (2^p-1) \ 2^p \\ &= 2m \end{split} \qquad \text{As σ is a multiplicative function and $\gcd(2^{p-1}, 2^p-1) = 1$.} \\ \sigma(2^p-1) &= 2^p \ \text{as } 2^p-1 \ \text{is prime, } \sigma(2^{p-1}) = (2^p-1) \ \text{as } p > 1. \end{split}$$

As $\sigma(m) = 2m$ then m is perfect if $2^p - 1$ is prime.

(ii) (7 marks)

(ii)(a) If n is prime then $\sigma(n) = n + 1$.

Therefore $\sigma(n) - n = (n + 1) - n = 1$.

As 1 is not divisible by 3 then n cannot be a prime.

(ii)(b) If $n = p^2$ where p is a prime then $\sigma(n) = 1 + p + p^2$.

$$3 \mid \sigma(n) - n \Rightarrow 3 \mid (1 + p + p^{2}) - p^{2}$$
$$\Rightarrow 3 \mid p + 1$$
$$\Rightarrow p \equiv 2 \pmod{3}$$

(iii)(c)

$$\sigma(n) = \sigma(pq) = \sigma(p) \ \sigma(q)$$
 since p and q are distinct primes
= $(1 + p) (1 + q)$ as p and q are prime.
= $1 + p + q + pq$.

$$3 \mid \sigma(n) - n \Rightarrow 3 \mid 1 + p + q$$

 $\Rightarrow p + q \equiv 2 \pmod{3}$

Therefore $\sigma(n) - n$ is divisible by 3 only if

$$p = 3$$
 and $q \equiv 2 \pmod{3}$, or

$$p \equiv 1 \pmod{3}$$
 and $q \equiv 1 \pmod{3}$ where $p \neq q$, p and q both prime, or $p \equiv 2 \pmod{3}$ and $q \equiv 3$.

[[Check.
$$\sigma(6) - 6 = 1 + 2 + 3 = 6$$
. $\sigma(7 * 13) - 7 * 13 = 1 + 7 + 13 = 21$.]]

(i) (4 marks)

The quadratic congruence has solutions if 5^2 - 4 * 2 * 6 = 25 - 48 = -23 is a quadratic residue of 17.

$$(-23/17) = (-6/17)$$
 Th. $2.1(a)$, $-23 \equiv -6 \pmod{23}$
= $(-1/17)(2/17)(3/17)$ Th. $2.1(c)$.
= $1 * 1 * (-1) = -1$ Th. $2.1(e)$, Th. 3.2 , and Th. 4.4 .

Therefore the congruence does not have solutions.

(ii) (3 marks)

$$\begin{array}{ll} \text{(-37/59)} &=& (22/59) & \text{Th. 2.1(a), -37} \equiv 22 \pmod{59} \\ &=& (2/59) \, (11/59) & \text{Th. 2.1(c).} \\ &=& (-1) \, \{ -(59/11) \, \} & \text{Th. 3.2. LQR. 59} \equiv 11 \equiv 3 \pmod{4}. \\ &=& (4/11) & 59 \equiv 4 \pmod{11} \\ &=& 1 & \text{Th. 2.1(b).} \end{array}$$

[[Alternatively not using the LQR. (-37/59) = (-96/59) = (-1/59) (16/59) (3/59) (2/59) = (-1) * 1 * 1 * (-1) = 1.]]

(iii) (4 marks)

When a = 2 and p = 8k + 5 the set S in Gauss' Lemma is $S = \{2, 4, 6, ..., 8k + 4\}$

If $2\alpha > p/2$ then $\alpha > p/4 = 2k + 5/4$. As α is an integer then $\alpha \ge 2k + 2$.

The number of values in the set S where the value exceeds p/2 is $\{(p-1)/2 - (2k+2)\} + 1 = (4k+2) - (2k+2) + 1 = 2k+1$.

Since $(-1)^{2k+1} = -1$ then, by Gauss' Lemma, 2 is a quadratic non-residue of any prime of the form 8k + 5.

[[You might find it easier to find number of values $\leq p/2$ and deduce the number > p/2. If $2\alpha \leq p/2$ then $\alpha \leq p/4 = 2k + 5/4$. As α is an integer then $\alpha \leq 2k + 1$. The number of values in the set S where the value exceeds p/2 is $\{(p-1)/2 - (2k+1)\} = (4k+2) - (2k+1) = 2k+1$.]]

(i) (5 marks)

$$172 = 2 * 79 + 14$$

$$79 = 5 * 14 + 9$$

$$14 = 1 * 9 + 5$$

$$9 = 1 * 5 + 4$$

$$5 = 1 * 4 + 1$$

$$4 = 4 * 1 + 0$$

Therefore 172/79 = [2, 5, 1, 1, 1, 4].

The convergents are $C_1 = 2/1$; $C_2 = 11/5$; $C_3 = 13/6$; $C_4 = 24/11$; $C_5 = 37/17$; $C_6 = 172/79$.

By Theorem 1.3(a) we have $172 * 17 - 37 * 79 = (-1)^6 = 1$.

So one solution of the linear Diophantine equation 172x - 79y = 1 is x = 17, y = 37.

(ii) (6 marks)

Let y = [2, 3, x] where x = [<3, 2>] = [3, 2, x].

The convergents of [3, 2, x] are 3/1, 7/2, (7x + 3)/(2x + 1) = x.

So
$$2x^2$$
 - 6x - 3 = 0 and the positive solution is $x = \frac{6 + \sqrt{36 + 24}}{4} = \frac{3 + \sqrt{15}}{2}$.

The convergents of [2, 3, x] are 2/1, 7/3, (7x + 2)/(3x + 1) = (14x + 4)/(6x + 2) = y.

$$[2, 3, <3, 2>] = y$$

$$= \frac{25 + 7\sqrt{15}}{11 + 3\sqrt{15}} = \frac{(25 + 7\sqrt{15})(11 - 3\sqrt{15})}{121 - 135} = \frac{(275 - 315) + \sqrt{15}(-75 + 77)}{-14} = \frac{20 - \sqrt{15}}{7}.$$

(i) (4 marks)

A primitive Pythagorean triple is of the form $(2mn, m^2 - n^2, m^2 + n^2)$, where m and n are positive integers, m > n, gcd(m, n) = 1, and m and n have opposite parity (Th. 2.1).

(i)(a) Side 20

As the 2nd and 3rd sides are odd then we must have 2mn = 20.

As mn = 10 then it possible values are m = 10, n = 1; m = 5, n = 2.

Therefore the possible primitive Pythagorean triples are (20, 99, 101) and (20, 21, 29).

(i)(b) Side 22

Similarly we must have 2mn = 22. As mn = 11 then it is not possible to choose m and n of opposite parity. Therefore there are no primitive Pythagorean triples with a side of 22.

(ii) (3 marks)

 $360 = 6 * 6 * 10 = 2^3 * 3^2 * 5$. Since no factor of the form 4k + 3 occurs to an odd power then 360 can be expressed as the sum of 2 squares (Th. 4.3).

364 = 4 * 91 = 4 * 7 * 13. Since a factor of the form 4k + 3 occurs to an odd power then 364 cannot be expressed as the sum of 2 squares (Th. 4.3).

$$360 = 36 * 10 = 6^2 * (3^2 + 1^2) = 18^2 + 6^2.$$

(iii) (4 marks)

[[Correction by Peter Monk. 08/10/05]]

$$\sqrt{8} = \sqrt{8} \frac{\sqrt{8} - 2}{\sqrt{8} - 2} = \frac{8 - 2\binom{m/n}{n}}{\binom{m/n}{n} - 2} = \frac{8n - 2m}{m - 2n}$$
. [[Probably easier to work right to left.]]

Let
$$\sqrt{8} = m_1/n_1$$
.

Let
$$m_2 = 8n_1 - 2m_1$$
, and $n_2 = m_1 - 2n_1$ then $\sqrt{8} = m_2/n_2$.
Since $2 < \sqrt{8} = m_1/n_1 < 3$ then $2n_1 < m_1 < 3n_1$. Therefore $0 < m_1 - 2n_1 = n_2 < n_1$.

As the denominator is smaller then the descent step has been established. Hence by the method of infinite descent it is not possible to write $\sqrt{8}$ in the given form.

Therefore $\sqrt{8}$ is irrational.

END OF NUMBER THEORY SOLUTIONS